

Chemical Engineering Journal 88 (2002) 1-9

www.elsevier.com/locate/cej

Isobaric vapour–liquid equilibrium of binary and ternary mixtures containing cyclohexane, *n*-hexane, 1,3-dioxolane and 1-butanol at 40.0 and 101.3 kPa

Ignacio Gascón, Santiago Martín, Héctor Artigas, Ma Carmen López, Carlos Lafuente*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, 50009 Zaragoza, Spain

Received 12 March 2001; received in revised form 29 May 2001; accepted 29 May 2001

Abstract

Isobaric vapour–liquid equilibrium (VLE) data for the binary mixture cyclohexane + 1-butanol and for the ternary system cyclohexane + 1,3-dioxolane + 1-butanol have been obtained with a recirculating still at 40.0 and 101.3 kPa. We also have determined isobaric VLE data at 101.3 kPa for the systems *n*-hexane+1,3-dioxolane and *n*-hexane+1,3-dioxolane+1-butanol. The experimental data for all the systems were checked for thermodynamic consistency using the method of Van Ness. Activity coefficients have been correlated with different equations (Wilson, van Laar, Margules, NRTL and UNIQUAC) giving satisfactory results. Predictions with the group contribution methods ASOG and UNIFAC were obtained and compared with the experimental data.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: VLE isobaric data; Ternary mixture; Alkane; 1,3-Dioxolane; 1-Butanol; ASOG; UNIFAC

1. Introduction

The design of separation process in industry requires a great knowledge of the behaviour of different systems in the phase equilibrium. This information is also very useful in the development of the group contribution methods, which are used in many cases while experimental data are not available.

In previous articles we have reported vapour–liquid equilibrium (VLE) data for the other constituent binary mixtures: n-hexane+1-butanol at 101.3 kPa [1], 1,3-dioxolane+ 1-butanol [2] and cyclohexane + 1,3-dioxolane [3] at both 40 and 101.3 kPa.

To contribute to increase the information about these kind of systems we present here the isobaric vapour–liquid equilibrium of the binary mixture cyclohexane + 1-butanol and for the ternary system cyclohexane + 1,3-dioxolane + 1-butanol at 40.0 and 101.3 kPa along with the VLE data at 101.3 kPa for the binary system *n*-hexane + 1,3-dioxolane and for the ternary mixture *n*-hexane + 1,3-dioxolane + 1-butanol. The VLE predictions using the group contribution methods ASOG and UNIFAC have also been included.

A survey of the literature shows that there are numerous studies for the system cyclohexane + 1-butanol at isothermic

conditions but only a few ones at isobaric conditions [4–7]. For the rest of the systems we have not found references in the literature.

2. Experimental apparatus and procedure

The liquids used were cyclohexane (>99.9%), *n*-hexane (>99%), 1,3-dioxolane (>99%) and 1-butanol (>99.8%) obtained from Aldrich. The purity of chemicals was checked by comparing the experimental densities at 298.15 K and the normal boiling points with those reported in [8,9], as they are listed in Table 1. We have also employed chromatographic methods to confirm the absence of other significant components, so they were used without any additional purification.

VLE data have been obtained with an all-glass dynamic recirculating still Fischer–Labodest model equipped with a Cottrell pump, a thermometer provided from Automatic System Laboratories, model F25, and a pressure transducter Druck PDCR 110/W. The experimental uncertainties in temperature and pressure are ± 0.01 K and ± 0.1 kPa, respectively.

Experimental procedure has been previously described [10]: when the equilibrium was reached, samples of liquid and vapour-condensed phase were taken and their densities (binary mixtures) analysed at 298.15 K with an Anton

^{*} Corresponding author. Tel.: +34-976-762295; fax: +34-976-761202. *E-mail address:* celadi@posta.unizar.es (C. Lafuente).

Nomenclature

A_{ij}	adjustable parameter for VLE correlation
	equations
B_{ii}	second virial coefficient of component
	$i ({\rm m}^3{\rm mol}^{-1})$
B_{ij}	cross second virial coefficient (m ³ mol ⁻¹)
F	objective function
Ν	number of experimental data
p_i^0	vapour pressure of component i (Pa)
Р	total pressure (Pa)
Q	reduced excess Gibbs free energy
R	gas constant $(J \mod^{-1} K^{-1})$
Т	temperature (K)
T_i	normal boiling point of component i (K)
V_i^0	molar volume of component $i (m^3 mol^{-1})$
x_i	mole fraction of component <i>i</i> in the liquid phase
Уi	mole fraction of component i in the vapour phase
Greek l	etters
α_{ij}	non-randomness parameter in the NRTL equation
Δ	average deviation
γi	activity coefficient of component i
γ_i^∞	activity coefficient of component <i>i</i> at infinite
	dilution
ρ	density $(kg m^{-3})$
Subscri	pt
i	component <i>i</i>
Superse	rints
col	colculated quantity
car	experimental quantity
exp	experimental quantity

Paar DMA-58 vibrating tube densimeter. While for the ternary mixtures densities and speeds of sound of liquid and vapour-condensed phase have been analysed at 298.15 K with a density and sound analyser Anton Paar DSA-48. Before this, we have determined the density calibration curves at 298.15 K for binary systems and the composition dependence of density and speed of sound at the same temperature for the ternary systems. Experimental uncertainty in liquid and vapour mole fractions can be estimated in ± 0.001 .

Table 1

Densities of pure compounds at $298.15 \,\mathrm{K}$, normal boiling points and comparison with literature data

Compound	$\rho (\mathrm{kg}\mathrm{m}^{-3})$		T_i (K)			
	Experimental	Literature	Experimental	Literature ^a		
Cyclohexane	773.72	773.89 ^a	353.92	353.88		
<i>n</i> -Hexane	655.07	654.84 ^a	341.88	341.89		
1,3-Dioxolane	1058.62	1058.66 ^b	348.55	348.8		
1-Butanol	805.64	805.75 ^a	390.97	390.87		

^a [8].

^b [9].

3. Results and discussion

Vapour–liquid equilibrium data for binary mixtures and ternary mixtures are presented in Tables 2 and 3

, respectively, along with calculated activity coefficients. These coefficients, γ_i , have been calculated taking into account the non-ideality of the vapour phase, by means of Eqs. (1) and (2).

Table 2

Experimental VLE data for the binary systems, cyclohexane (1)+1-butanol (2), at 40.0 and 101.3 kPa and *n*-hexane + 1,3-dioxolane at 101.3 kPa

T (K)	<i>x</i> ₁	У1	γ1	γ2	
Cyclohexane	+ 1-butanol	at $P = 40.01$	xPa		
361.52	0.023	0.228	3.182	0.989	
355.62	0.051	0.419	3.121	0.994	
349.04	0.094	0.587	2.887	1.004	
342.71	0.138	0.712	2.906	1.003	
338.85	0.195	0.771	2.524	1.040	
335.44	0.246	0.822	2.389	1.032	
333.96	0.294	0.830	2.122	1.140	
331.94	0.359	0.864	1.939	1.121	
330.10	0.417	0.883	1.818	1.174	
328.42	0.533	0.901	1.540	1.362	
327.62	0.593	0.912	1.442	1.454	
326.63	0.733	0.920	1.219	2.133	
326.11	0.840	0.936	1.103	2.934	
325.95	0.868	0.939	1.077	3.421	
325.81	0.938	0.952	1.015	5.779	
Cyclohexane	+ 1-butanol	at $P = 101.3$	kPa		
386.12	0.026	0.178	2.923	0.997	
382.86	0.046	0.302	3.030	0.972	
380.15	0.067	0.372	2.738	0.989	
371.55	0.140	0.590	2.585	0.975	
366.29	0.205	0.671	2.309	1.048	
364.23	0.241	0.722	2.235	1.011	
362.06	0.278	0.749	2.134	1.052	
359.33	0.360	0.784	1.863	1.149	
357.64	0.407	0.817	1.802	1.131	
355.60	0.509	0.836	1.564	1.341	
354.59	0.598	0.861	1.412	1.453	
353.52	0.730	0.877	1.216	2.010	
352.92	0.847	0.902	1.097	2.905	
352.64	0.913	0.916	1.042	4.437	
352.73	0.938	0.931	1.028	5.094	
<i>n</i> -Hexane +	1,3-dioxolane	at $P = 101$.	3 kPa		
343.94	0.043	0.188	4.127	0.989	
340.90	0.092	0.301	3.377	0.996	
339.19	0.127	0.354	3.029	1.016	
338.13	0.161	0.385	2.683	1.045	
336.91	0.225	0.431	2.231	1.093	
336.14	0.284	0.462	1.940	1.150	
335.55	0.353	0.490	1.686	1.232	
335.29	0.397	0.506	1.561	1.293	
335.01	0.480	0.533	1.371	1.432	
334.82	0.533	0.552	1.287	1.540	
334.87	0.624	0.593	1.179	1.735	
335.22	0.731	0.650	1.090	2.060	
336.20	0.809	0.707	1.039	2.346	
337.29	0.870	0.769	1.016	2.615	
340.43	0.970	0.929	1.000	3.124	

Table 3

Experimental VLE data of the ternary mixture cyclohexane (1) + 1,3-dioxolane (2) + 1-butanol (3) at 40.0 and 101.3 kPa and for the ternary mixture *n*-hexane (1) + 1,3-dioxolane (2) + 1-butanol (3) at 101.3 kPa

<i>T</i> (K)	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> 1	<i>Y</i> 2	γ ₁	<i>γ</i> ₂	γ3
Cyclohexane +	1,3-dioxolane + 1-b	outanol at $P = 40.0$	kPa				
321.17	0.853	0.098	0.742	0.235	1.030	2.635	4.585
322.27	0.793	0.088	0.755	0.195	1.082	2.384	3.842
323.35	0.737	0.075	0.783	0.156	1.161	2.165	2.783
324.02	0.669	0.074	0.784	0.158	1.250	2.157	1.861
318.40	0.704	0.236	0.597	0.378	1.114	1.967	4.819
319.59	0.653	0.226	0.614	0.358	1.181	1.857	2.488
320.39	0.584	0.209	0.633	0.325	1.321	1.784	2.078
321.35	0.563	0.192	0.638	0.311	1.333	1.799	2.012
325.18	0.348	0.130	0.664	0.254	1.952	1.905	1.211
326.90	0.379	0.092	0.713	0.200	1.810	1.993	1.148
327.84	0.327	0.097	0.699	0.203	1.990	1.862	1.126
331.87	0.222	0.084	0.656	0.207	2.393	1.916	1.044
316.72	0.517	0.423	0.508	0.481	1.376	1.480	2.355
317.89	0.478	0.395	0.513	0.464	1.437	1.468	2.163
319.07	0.453	0.355	0.538	0.432	1.521	1.456	1.735
322.65	0.281	0.285	0.519	0.421	2.071	1.554	1.237
324.43	0.248	0.253	0.513	0.411	2.175	1.606	1.227
327.02	0.207	0.211	0.515	0.398	2.385	1.693	1.037
331.29	0.153	0.161	0.495	0.372	2.673	1.799	1.059
340.67	0.088	0.107	0.427	0.338	2.940	1.806	0.970
346.25	0.061	0.080	0.370	0.286	3.086	1.741	1.008
316.43	0.328	0.624	0.420	0.566	1.813	1.195	3.817
317.01	0.322	0.615	0.417	0.561	1.794	1.178	4.407
317.77	0.325	0.567	0.429	0.555	1.776	1.222	1.783
321.70	0.171	0.475	0.385	0.578	2.616	1.305	0.991
323.84	0.143	0.422	0.355	0.569	2.667	1.349	1.459
326.27	0.117	0.358	0.337	0.568	2.836	1.451	1.312
329.51	0.098	0.308	0.324	0.573	2.905	1.503	1.046
334.30	0.066	0.239	0.276	0.568	3.121	1.626	1.042
341.03	0.044	0.176	0.231	0.524	3.145	1.635	1.026
345.32	0.040	0.126	0.243	0.440	3.181	1.694	1.002
351.45	0.021	0.086	0.165	0.392	3.419	1.843	0.975
321.82	0.080	0.754	0.240	0.741	3.472	1.037	1.078
322.36	0.078	0.727	0.222	0.737	3.229	1.053	1.918
324.48	0.071	0.661	0.210	0.734	3.106	1.064	1.682
326.62	0.059	0.577	0.191	0.731	3.149	1.122	1.524
327.45	0.052	0.527	0.183	0.744	3.325	1.208	1.176
331.55	0.034	0.436	0.144	0.756	3.471	1.275	1.018
333.76	0.030	0.386	0.130	0.753	3.295	1.324	0.958
338.91	0.018	0.277	0.088	0.722	3.136	1.486	0.982
343.30	0.011	0.195	0.068	0.651	3.448	1.664	1.031
349.34	0.007	0.138	0.050	0.569	3.310	1.710	0.968
353.75	0.003	0.096	0.026	0.462	3.526	1.781	1.005
Cyclobeyane +	1.3-dioxolane \pm 1-h	sutanol at $P = 101$	k Pa				
348 20	0.857	0.091	0.762	0.207	1.052	2 338	3 352
349.32	0.789	0.084	0.757	0.163	1.092	1.966	3 359
350 35	0.736	0.004	0.772	0.103	1.050	1.900	2 310
352.19	0.669	0.073	0.780	0.130	1.226	1.651	1.628
359.00	0.364	0.018	0.757	0.035	1.220	1.523	1.158
363 19	0.252	0.012	0.702	0.027	2 152	1.525	1.059
366 71	0.198	0.009	0.762	0.027	2.152	1.570	1.037
376 32	0.092	0.004	0.452	0.012	2.305	1 495	1.006
346.40	0.637	0 222	0.619	0 332	1 214	1.638	2 131
347.86	0.568	0.222	0.624	0.332	1 313	1.556	1 788
348.82	0.530	0.184	0.645	0.274	1 413	1 526	1 547
353 70	0.357	0.104	0.640	0.219	1 804	1.520	1 193
354 16	0.351	0.128	0.640	0.219	1 811	1 513	1 147
355.81	0 338	0.102	0.652	0.185	1 878	1 530	1 153
359.60	0.247	0.091	0.613	0.179	2 115	1 491	1 054
375.35	0.074	0.045	0.365	0.135	2.783	1.499	1.000
0.0.00	0.071	0.010	0.000	0.100		***///	1.000

T (K)	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> 1	<i>y</i> ₂	γ1	γ2	γ3
342.76	0.527	0.430	0.495	0.491	1.313	1.393	2.386
344.71	0.476	0.395	0.506	0.458	1.399	1.334	1.858
346.15	0.448	0.350	0.521	0.424	1.464	1.337	1.690
350.84	0.286	0.288	0.490	0.410	1.875	1.363	1.167
353.38	0.257	0.251	0.490	0.379	1.937	1.344	1.178
354.75	0.230	0.222	0.495	0.358	2.102	1.382	1.115
361.60	0.153	0.158	0.456	0.322	2.404	1.436	0.992
375.41	0.051	0.072	0.263	0.230	2.905	1.570	1.016
343.22	0.317	0.634	0.387	0.584	1.683	1.109	4.243
344.16	0.324	0.587	0.405	0.569	1.674	1.130	2.000
349.91	0.181	0.473	0.357	0.564	2.219	1.162	1.187
351.61	0.159	0.428	0.346	0.560	2.329	1.210	1.093
354.49	0.122	0.357	0.320	0.550	2.583	1.308	1.051
358.55	0.097	0.296	0.295	0.525	2.670	1.338	1.042
369.10	0.047	0.178	0.206	0.452	2.898	1.430	0.995
371.82	0.042	0.132	0.198	0.380	2.907	1.523	1.033
378.95	0.019	0.080	0.117	0.277	3.181	1.536	1.033
346.91	0.086	0.815	0.193	0.782	2.766	1.016	1.515
347.87	0.088	0.727	0.205	0.747	2.788	1.058	1.487
352.94	0.059	0.571	0.169	0.742	2.952	1.140	1.088
356.12	0.048	0.516	0.145	0.735	2.842	1.134	1.078
358.55	0.037	0.444	0.129	0.719	3.063	1.200	1.030
361.30	0.026	0.369	0.096	0.701	3.006	1.300	1.048
364.49	0.023	0.302	0.092	0.650	2.987	1.350	1.043
370.50	0.014	0.205	0.065	0.553	2.962	1.443	1.043
3/5.69	0.010	0.159	0.043	0.485	2.407	1.425	0.988
381.45	0.003	0.093	0.021	0.341	3.406	1.500	0.988
n-Hexane -	+ 1,3-dioxolane + 1-butanol	at $P = 101.3 \text{kPa}$	ı				
339.10	0.870	0.087	0.817	0.151	1.021	2.447	6.537
340.25	0.775	0.076	0.826	0.125	1.119	2.252	2.725
341.10	0.691	0.064	0.844	0.097	1.250	2.029	1.912
342.02	0.617	0.056	0.845	0.086	1.364	2.004	1.600
344.37	0.459	0.040	0.843	0.060	1.706	1.836	1.308
346.38	0.371	0.033	0.832	0.052	1.966	1.819	1.193
350.33	0.278	0.025	0.809	0.046	2.280	1.884	1.058
354.53	0.203	0.019	0.765	0.033	2.630	1.587	1.089
368.00	0.094	0.011	0.587	0.029	3.076	1.656	1.011
337.33	0.682	0.221	0.686	0.274	1.155	1.863	3.969
339.32	0.591	0.193	0.716	0.238	1.309	1.734	1.851
341.23	0.491	0.161	0.736	0.201	1.529	1.659	1.428
343.47	0.384	0.129	0.747	0.171	1.856	1.647	1.189
346.65	0.284	0.100	0.731	0.146	2.239	1.662	1.208
257.16	0.229	0.083	0.718	0.138	2.450	1.003	1.043
362 53	0.134	0.038	0.033	0.114	2.705	1.046	1.094
370.01	0.070	0.043	0.000	0.084	3 283	1.772	1.007
336.10	0.070	0.030	0.490	0.084	1.437	1.055	1.028
338 30	0.478	0.383	0.597	0.400	1.437	1 395	1.510
340.36	0.350	0.331	0.597	0.342	1.576	1.375	1.517
342.62	0.286	0.280	0.609	0.342	2 084	1 419	1.307
345 35	0.233	0.237	0.608	0.300	2 357	1 468	1 1 1 9
348.27	0.193	0.202	0.592	0.288	2.548	1.515	1.112
354.18	0.141	0.156	0.564	0.265	2.819	1.513	1.037
360.39	0.099	0.119	0.523	0.243	3.155	1.520	0.970
364.82	0.077	0.096	0.456	0.224	3.158	1.547	1.039
371.45	0.048	0.065	0.367	0.183	3.463	1.569	1.041
379.76	0.022	0.038	0.218	0.135	3.697	1.595	1.025
337.14	0.293	0.635	0.485	0.505	1.914	1.179	1.352
339.01	0.260	0.581	0.488	0.483	2.049	1.162	1.613
341.26	0.217	0.516	0.489	0.473	2.298	1.189	1.123
343.58	0.183	0.454	0.477	0.462	2.481	1.228	1.182
345.87	0.154	0.401	0.460	0.454	2.659	1.275	1.216
351.64	0.099	0.315	0.409	0.459	3.123	1.370	1.079

Table 3 (Continued)

T (K)	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> 1	<i>y</i> ₂	γ1	γ2	γ3
358.94	0.072	0.225	0.376	0.421	3.241	1.419	0.997
365.88	0.045	0.159	0.302	0.384	3.486	1.513	1.014
372.45	0.032	0.116	0.246	0.344	3.401	1.554	0.949
378.92	0.015	0.069	0.150	0.243	3.804	1.579	1.019
343.53	0.079	0.803	0.277	0.693	3.347	1.027	1.796
344.96	0.074	0.758	0.273	0.693	3.377	1.037	1.333
356.48	0.033	0.442	0.176	0.679	3.537	1.218	1.064
360.22	0.024	0.364	0.145	0.665	3.630	1.297	1.015
364.59	0.017	0.286	0.116	0.628	3.664	1.378	0.998
369.30	0.011	0.221	0.085	0.562	3.691	1.407	1.029
374.47	0.007	0.154	0.061	0.470	3.676	1.481	1.019
379.47	0.005	0.102	0.048	0.353	3.607	1.493	1.011

• Binary systems:

$$\gamma_{i} = \frac{y_{i}P}{x_{i}p_{i}^{0}} \exp\left[\frac{(B_{ii} - V_{i}^{0})(P - p_{i}^{0}) + (1 - y_{i})^{2}P\delta_{ij}}{RT}\right]$$
(1)

• Ternary systems:

$$\gamma_{i} = \frac{y_{i}P}{x_{i}p_{i}^{0}} \exp\left[\frac{(B_{ii} - V_{i}^{0})(P - p_{i}^{0})}{RT} + \frac{P}{2RT}\sum_{1}^{3}\sum_{1}^{3}y_{j}y_{k}(2\delta_{ji} - \delta_{jk})\right]$$
(2)

where

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

In the above equations, x_i and y_i are the liquid and vapour phase mole fractions of component *i* in the mixture, *P* the total pressure, p_i^0 the pure component vapour pressure, B_{ii} the second virial coefficient of the pure gas, B_{ij} the cross second virial coefficient, and V_i^0 is the molar volume of the pure liquid component.

The Antoine equation has been used for calculating p_i^0 . The constants used are presented in Table 4. The second virial coefficient, B_{ii} , has been estimated using the Redlich–Kwong equation [12] for the 1,3-dioxolane, while for the rest of the components the equations of the TRC tables [13] were used. The cross second virial coefficient, B_{ij} , has been calculated by means of the Amdur–Mason

Table 4Coefficients of the Antoine equation

Compound	Α	В	С
Cyclohexane ^a	5.93002	1182.77	220.618
<i>n</i> -Hexane ^a	6.00091	1171.170	224.408
1,3-Dioxolaneb	6.23172	1236.70	217.235
1-Butanol ^a	6.54743	1338.769	177.042

^a [8].

^b[11].

equation [14]. The molar volume, V_i^0 , was estimated with the Yen and Woods method [15].

The thermodynamic consistency of the experimental binary data has been checked by means of the test of Van Ness modified by Fredenslund et al. [16] and extended to multicomponent mixtures employing the equation proposed by Prausnitz et al. [17]:

$$\ln \gamma_i = Q + \left(\frac{\partial Q}{\partial x_i}\right)_{T,P,x_j \neq i} - \sum_{j=1}^{k-1} x_j \left(\frac{\partial Q}{\partial x_j}\right)_{T,P,x_i \neq j}$$
(4)

where k is the number of components in the mixture and Q is the reduced excess Gibbs free energy, $Q = G^{E}/RT$. We have used a Cibulka equation in order to determine the relationship between Q and the liquid phase composition:

$$Q = \sum_{i=1}^{k} \sum_{j=i+1}^{k} x_i x_j \sum_{p=0}^{p} A_p (x_i - x_j)^p + x_1 x_2 (1 - x_1 - x_2) (B_1 + B_2 x_1 + B_3 x_2)$$
(5)

According to this consistency test, the experimental data are considered thermodynamically consistent if the average deviation for the vapour phase composition (Δy) is less than 0.01. Applied to our mixtures we obtain satisfactory results, as it can be seen in Table 5.

Table 5					
Results	of	the	thermodynamic	consistency	test

	P (kPa)	ΔP^{a} (kPa)	Δy^a
Binary systems			
Cyclohexane + 1-butanol	40.0	0.3	0.0047
	101.3	0.9	0.0053
n-Hexane + 1,3-dioxolane	101.3	0.5	0.0015
Ternary systems			
Cyclohexane + 1,3-dioxolane + 1-butanol	40.0	0.6	0.006
	101.3	1.3	0.004
n-Hexane + 1,3-dioxolane + 1-butanol	101.3	1.9	0.006

^a Average deviations.

Table 6			
Coefficients and standard de	eviation (σ) in the correlation	of boiling points by the	Tamir-Wisniak equations

	P (kPa)	$\overline{C_0}$	$\overline{C_1}$	$\overline{C_2}$	<i>C</i> ₃	σ	A	B	С
Binary systems									
Cyclohexane $+$ 1,3-dioxolane ^a	40.0	-35.99	-2.56	-35.85	-2.91	0.35			
	101.3	-38.53	-3.45	-34.26	-6.82	0.22			
Cyclohexane + 1-butanol	40.0	-69.14	50.82	-54.10	39.21	0.33			
	101.3	-65.56	41.96	-37.82	4.47	0.22			
1,3-Dioxolane + 1-butanol ^b	40.0	-50.71	40.46	-19.75	12.95	0.29			
	101.3	-39.48	27.83	-8.19	-1.96	0.16			
n-Hexane + 1,3-dioxolane	101.3	-40.67	6.31	-37.88	23.52	0.18			
n-Hexane + 1-butanol ^c	101.3	-83.05	66.46	-80.64	57.12	0.30			
Ternary systems									
Cyclohexane $+$ 1,3-dioxolane $+$ 1-butanol		40.0				0.64	-1.16	81.39	20.92
		101.3				0.53	10.69	84.58	22.09
n-Hexane + 1,3-dioxolane + 1-butanol		101.3				0.49	-48.25	124.22	43.86

^a [3].

^b[2].

^c [1].

The boiling temperatures of binary and ternary systems were correlated by the following equations proposed by Tamir and Wisniak [18]:

$$T = \sum_{i=1}^{2} x_i T_i + x_1 x_2 \sum_{k=0}^{m} C_k (x_1 - x_2)^k$$
(6)

$$T = \sum_{i=1}^{3} x_i T_i + \sum_{i,j=1}^{3} \left[x_i x_j \sum_{k=0}^{m} C_k (x_i - x_j)^k \right] + x_1 x_2 x_3 [A + B(x_1 - x_2) + C(x_1 - x_3)]$$
(7)

where T_i is the boiling temperature of pure component *i* (K), *m* the number of binary parameters, C_k the binary coefficient, and *A*, *B* and *C* are the ternary parameters. All these parameters obtained by the least squares method, along with the standard deviations between experimental and calculated boiling temperatures are presented in Table 6. We have included in this table the parameters of the constituent binary mixtures which have already been published [1–3].

The activity coefficients of the binary mixtures, γ_i , were correlated with the Margules, van Laar, Wilson, NRTL and UNIQUAC equations [19–23], while for the ternary mixtures were fitted to the Wilson, NRTL and UNIQUAC equations.

Table 7

Correlation parameters, average deviations ΔT and Δy , and activity coefficients at infinite dilution, γ_i^{∞} , for the binary systems cyclohexane + 1-butanol and *n*-hexane + 1,3-dioxolane

Equation	A ₁₂	A ₂₁	ΔT (K)	Δy	γ_1^{∞}	γ_2^∞
Cyclohexane + 1-but	anol at $P = 40.0 \mathrm{kPa}$					
Margules	1.1460 ^a	1.9014 ^a	0.42	0.0073	3.15	6.69
van Laar	1.1768 ^a	2.0921 ^a	0.33	0.0061	3.24	8.10
Wilson	564.1032 ^b	6329.9522 ^b	0.25	0.0051	3.33	11.97
NRTL	5264.9959 ^b	385.1990 ^b	0.35	0.0072	3.17	8.00
UNIQUAC	2728.7085 ^b	-771.5987 ^b	0.34	0.0068	3.20	8.40
Cyclohexane + 1-but	anol at $P = 101.3$ kPa					
Margules	1.0578	1.8520	0.50	0.0078	2.88	6.37
van Laar	1.1002	2.0283	0.22	0.0059	3.00	7.60
Wilson	394.2109	6498.4314	0.23	0.0059	3.09	9.98
NRTL	5752.4913	146.5947	0.22	0.0066	2.96	7.42
UNIQUAC	3007.7152	-928.3162	0.21	0.0062	3.00	7.75
n-Hexane + 1,3-diox	olane at $P = 101.3$ kPa					
Margules	1.5447	1.1663	0.15	0.0035	4.69	3.21
van Laar	1.5718	1.1827	0.15	0.0022	4.82	3.26
Wilson	1788.9594	3216.3424	0.14	0.0024	5.10	3.38
NRTL	838.9685	3721.2216	0.16	0.0023	4.71	3.25
UNIQUAC	1781.1570	-8.5440	0.16	0.0024	4.74	3.23

^a These values are dimensionless.

^b These values are in J/mol.

As recommended by Renon and Prausnitz [22] the mixture non-randomness parameter α_{ij} in the NRTL equation was taken equal to 0.3 for all the systems. The estimation of the corresponding parameters is based on the minimisation of the following objective function:

$$F = \sum_{i=1}^{m} \left[\sum_{j=1}^{n} \left(\frac{\gamma_j^{\exp} - \gamma_j^{\operatorname{cal}}}{\gamma_j^{\exp}} \right)^2 \right]_i$$
(8)

where m is the number of experimental data and n is the number of components in the mixture.

The minimisation of *F* has been done with a non-linear regression procedure [24]. Parameters resulting of the fitting A_{ij} (see definitions in [25]) along with the average deviations in temperature (ΔT) and composition of vapour phase (Δy) and activity coefficients at infinite dilution for binary mixtures are gathered in Table 7 and the ternary parameters are presented in Table 8. In these tables we can observe that the more important differences in correlation results between the different equations appear in activity coefficients at infinite dilution of the 1-butanol in the binary system cyclohexane + 1-butanol at both pressures. While fitting

Table 8

Correlation parameters and average deviations, ΔT and Δy , for the ternary systems cyclohexane + 1,3-dioxolane + 1-butanol and *n*-hexane + 1,3-dioxolane + 1-butanol

Equation	ij	$i A_{ij} A_{ji}$		ΔT	Δy
		-	-	(K)	
Cyclohexane +	1,3-dio	oxolane + 1-bu	tanol at 40.0 kPa		
Wilson	12	1437.9124	3659.7583	0.56	0.010
	13	238.7424	10674.0967		
	23	1857.0105	482.5190		
NRTL	12	1591.3994	2678.0547	0.45	0.007
	13	5368.0879	617.5519		
	23	1422.4998	992.8501		
UNIQUAC	12	1254.7439	505.7956	0.51	0.008
	13	2657.6680	-686.9653		
	23	1262.0513	-162.6295		
Cyclohexane +	1,3-dio	oxolane + 1-bu	tanol at 101.3 kPa		
Wilson	12	1221.3320	2728.2788	0.45	0.006
	13	648.2503	5101.4277		
	23	159.5993	2397.0752		
NRTL	12	1435.8020	2392.8743	0.48	0.006
	13	4572.7666	713.0212		
	23	927.8273	831.5840		
UNIQUAC	12	1613.5835	21.3056	0.39	0.005
	13	2313.2500	-589.6110		
	23	1071.8336	-202.5556		
n-Hexane + 1,3	-dioxo	lane + 1-butan	ol at 101.3 kPa		
Wilson	12	1174.3831	4109.3467	0.46	0.007
	13	153.5058	8444.2559		
	23	1595.5479	216.0244		
NRTL	12	1289.7380	3410.1040	0.32	0.006
	13	5378.6455	863.4644		
	23	1205.6902	677.5863		
UNIQUAC	12	1700.5527	228.5577	0.46	0.006
	13	3198.7336	-929.110		
	23	201.3244	612.3384		

Fig. 1. $T-x_1-y_1$ for the binary mixture cyclohexane (1) + 1-butanol (2): experimental at 40.0 kPa (\bigcirc , \bigcirc) and 101.3 kPa (\square , \blacksquare); Wilson equation (continuous lines); UNIFAC predictions (dashed lines).

results for the other binary mixture and the three ternary systems are much more similar with all the equations.

We have chosen the Wilson equation to plot the vapour– liquid equilibrium data (T, x_1, y_1) of the binary mixtures in Figs. 1 and 2, where it can be observed that the two systems show azeotropic behaviour. The calculated compositions of the azeotropic points are as follows:

- cyclohexane + 1-butanol at 40.0 kPa ($x_{1az} = 0.965$ at $T_{az} = 325.6$ K);
- cyclohexane + 1-butanol at 101.3 kPa ($x_{1az} = 0.919$ at $T_{az} = 352.9$ K) which is near the same experimental

Fig. 2. $T_{-x_1-y_1}$ for the binary mixture *n*-hexane (1) + 1,3-dioxolane (2): experimental at 101.3 kPa (\Box , \blacksquare); Wilson equation (continuous lines); UNIFAC predictions (dashed lines).

Fig. 3. Isotherms in liquid phase of the isobaric VLE: correlated with Tamir–Wisniak equation (continuous lines) and predicted with UNIFAC model (dashed lines): (a) cyclohexane + 1,3-dioxolane + 1-butanol at 40.0 kPa; (b) cyclohexane + 1,3-dioxolane + 1-butanol at 101.3 kPa; (c) n-hexane + 1,3-dioxolane + 1-butanol at 101.3 kPa.

Table 9

VLE predictions with the group contribution methods ASOG and UNI-FAC, average deviations ΔT and Δy

	ASOG			UNIFAC	
	P (kPa)	ΔT^{a} (K)	Δy^{a}	ΔT^{a} (K)	Δy^{a}
Binary systems					
Cyclohexane $+ 1$ -butanol	40.0	0.41	0.0063	0.72	0.0066
	101.3	0.72	0.0137	0.45	0.0063
n-Hexane + 1,3-dioxolane	101.3	9.20	0.1270	1.26	0.0182
Ternary systems					
Cyclohexane + 1,3-dioxolane + 1-butanol	40.0	6.96	0.0746	0.88	0.0186
	101.3	5.91	0.0499	0.75	0.0118
<i>n</i> -Hexane + 1,3-dioxolane + 1-butanol	101.3	10.14	0.0441	0.80	0.0119

^a Average deviations.

azeotropic point ($x_{1az} = 0.917$ at $T_{az} = 352.7$ K) determined by Chen et al. [7];

• *n*-hexane + 1,3-dioxolane at 101.3 kPa ($x_{1az} = 0.568$ at $T_{az} = 352.9$ K).

The isotherms for the ternary systems calculated with the Tamir–Wisniak equation are represented in Fig. 3. To search the azeotropic temperature and composition of the ternary systems we have used the Wang et al. method [26] as it is described in, giving that our ternary systems does not exhibit azeotropic behaviour.

The binary and ternary mixtures analysed show positive deviations from ideality with activity coefficients bigger than the unit for all the systems. The behaviour of the mixtures has been analysed in terms of the existing molecular interactions in previous papers [1-3], being confirmed now our precedent conclusions by the experimental results reported here.

4. Predictions

Modified UNIFAC and ASOG methods, with parameters proposed by Gmehling et al. [27,28] and Tochigi et al. [29], respectively, have been employed to predict the VLE data of the binary and ternary systems studied. The average deviations between experimental and calculated temperature (ΔT) and composition of vapour phase (Δy) appear in Table 9. In general, we can observe that UNIFAC predictions are satisfactory for all the systems. UNIFAC predictions are especially better than ASOG for the ternary mixtures analysed. We have plotted the UNIFAC predictions for each system in Figs. 1–3 along with the experimental results.

Acknowledgements

I. Gascón acknowledges financial support of Ministerio de Ciencia y Tecnología (Project PB 98-1624).

References

- [1] M. Domínguez, A.M. Mainar, H. Artigas, F.M. Royo, J.S. Urieta, J. Chem. Eng. Jpn. 30 (1997) 484–490.
- [2] I. Gascón, M. Domínguez, P. Cea, M.C. López, F.M. Royo, J. Chem. Thermodyn., 2000, in press.
- [3] C. Lafuente, A.M. Mainar, P. Cea, F.M. Royo, J.S. Urieta, Phys. Chem. Liq. 38 (2000) 369–380.
- [4] B.V.S. Rao, C.V. Rao, Indian J. Technol. 1 (1963) 143-150.
- [5] A. Zacharias, D. Srinivasan, M.G. Subba Rau, Chem. Petrochem. J. 10 (1979) 31–33.
- [6] Z.L. Zong, X.H. Yang, X.Y. Zheng, J. Chem. Eng. Jpn. 16 (1983) 1–16.
- [7] G.H. Chen, Q. Wang, L.Z. Zhang, J.B. Bao, S.J. Han, Thermochim. Acta 253 (1995) 295–305.
- [8] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic solvents: physical properties and methods of purification, in: Techniques of Chemistry, 4th Edition, Wiley/Interscience, New York, 1986.
- [9] P. Brocos, E. Calvo, A. Amigo, R. Bravo, M. Pinto, A.H. Roux, G. Roux-Desgranges, J. Chem. Eng. Data 43 (1998) 112–116.
- [10] H. Artigas, C. Lafuente, M.C. López, F.M. Royo, J.S. Urieta, Fluid Phase Equilib. 134 (1997) 163–174.
- [11] H.S. Wu, S.Y. Sandler, J. Chem. Eng. Data 34 (1989) 209-213.
- [12] O. Redlich, J.N.S. Kwong, Chem. Rev. 44 (1949) 233-244.
- [13] TRC Tables: Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center Data Project, Texas A&M University, College Station, TX, 1972.

- [14] I. Amdur, E.A. Mason, Phys. Fluids 1 (1958) 370-383.
- [15] L.C. Yen, S.S. Woods, AIChE J. 14 (1968) 95-99.
- [16] A. Fredenslund, J. Gmehling, P. Rasmussen, Vapour–Liquid Equilibria Using UNIFAC, Elsevier, Amsterdam, 1977.
- [17] J.M. Prausnitz, H. Ying, L. Honglai, Fluid Phase Equilib. 95 (1994) 73–92.
- [18] A. Tamir, J. Wisniak, J. Chem. Eng. Data 23 (1978) 293– 298.
- [19] M. Margules, Akad. Wiss. Wien Math-Naturwiss. KI II 104 (1895) 1234.
- [20] J.J. van Laar, Z. Phys. Chem. 72 (1910) 723-751.
- [21] G.M. Wilson, J. Am. Chem. Soc. 86 (1964) 127-130.
- [22] H. Renon, J.M. Prausnitz, AIChE J. 14 (1967) 299-307.
- [23] D.S. Abrams, J.M. Prausnitz, AIChE J. 21 (1975) 116-128.
- [24] J.A. Nelder, R.A. Mead, Comput. J. 7 (1965) 308-313.
- [25] J. Gmehling, U. Onken, W. Arlt, Vapour–liquid equilibrium data collection, in: Dechema Chemistry Data Series, Dieter Behrens and Reiner Eckerman, Vol. I, Part 6a, Frankfurt/Main, 1984, pp. xx– xxiv.
- [26] Q. Wang, G. Chen, S. Han, J. Chem. Eng. Data 41 (1996) 49– 52.
- [27] J. Gmehling, J. Li, M. Schiller, Ind. Eng. Chem. Res. 32 (1993) 178–193.
- [28] J. Gmehling, J. Lohmann, A. Jakob, J. Li, R. Joh, Ind. Eng. Chem. Res. 37 (1998) 4876–4882.
- [29] K. Tochigi, D. Tiegs, J. Gmehling, K. Kojima, J. Chem. Eng. Jpn. 23 (1990) 453–463.